/
usr
/
include
/
unicode
/
Upload File
HOME
/* ******************************************************************************* * Copyright (C) 1997-2012, International Business Machines Corporation and others. * All Rights Reserved. ******************************************************************************* */ #ifndef RBNF_H #define RBNF_H #include "unicode/utypes.h" /** * \file * \brief C++ API: Rule Based Number Format */ /** * \def U_HAVE_RBNF * This will be 0 if RBNF support is not included in ICU * and 1 if it is. * * @stable ICU 2.4 */ #if UCONFIG_NO_FORMATTING #define U_HAVE_RBNF 0 #else #define U_HAVE_RBNF 1 #include "unicode/coll.h" #include "unicode/dcfmtsym.h" #include "unicode/fmtable.h" #include "unicode/locid.h" #include "unicode/numfmt.h" #include "unicode/unistr.h" #include "unicode/strenum.h" U_NAMESPACE_BEGIN class NFRuleSet; class LocalizationInfo; /** * Tags for the predefined rulesets. * * @stable ICU 2.2 */ enum URBNFRuleSetTag { URBNF_SPELLOUT, URBNF_ORDINAL, URBNF_DURATION, URBNF_NUMBERING_SYSTEM, URBNF_COUNT }; #if UCONFIG_NO_COLLATION class Collator; #endif /** * The RuleBasedNumberFormat class formats numbers according to a set of rules. This number formatter is * typically used for spelling out numeric values in words (e.g., 25,3476 as * "twenty-five thousand three hundred seventy-six" or "vingt-cinq mille trois * cents soixante-seize" or * "fünfundzwanzigtausenddreihundertsechsundsiebzig"), but can also be used for * other complicated formatting tasks, such as formatting a number of seconds as hours, * minutes and seconds (e.g., 3,730 as "1:02:10"). * * <p>The resources contain three predefined formatters for each locale: spellout, which * spells out a value in words (123 is "one hundred twenty-three"); ordinal, which * appends an ordinal suffix to the end of a numeral (123 is "123rd"); and * duration, which shows a duration in seconds as hours, minutes, and seconds (123 is * "2:03"). The client can also define more specialized <tt>RuleBasedNumberFormat</tt>s * by supplying programmer-defined rule sets.</p> * * <p>The behavior of a <tt>RuleBasedNumberFormat</tt> is specified by a textual description * that is either passed to the constructor as a <tt>String</tt> or loaded from a resource * bundle. In its simplest form, the description consists of a semicolon-delimited list of <em>rules.</em> * Each rule has a string of output text and a value or range of values it is applicable to. * In a typical spellout rule set, the first twenty rules are the words for the numbers from * 0 to 19:</p> * * <pre>zero; one; two; three; four; five; six; seven; eight; nine; * ten; eleven; twelve; thirteen; fourteen; fifteen; sixteen; seventeen; eighteen; nineteen;</pre> * * <p>For larger numbers, we can use the preceding set of rules to format the ones place, and * we only have to supply the words for the multiples of 10:</p> * * <pre> 20: twenty[->>]; * 30: thirty[->>]; * 40: forty[->>]; * 50: fifty[->>]; * 60: sixty[->>]; * 70: seventy[->>]; * 80: eighty[->>]; * 90: ninety[->>];</pre> * * <p>In these rules, the <em>base value</em> is spelled out explicitly and set off from the * rule's output text with a colon. The rules are in a sorted list, and a rule is applicable * to all numbers from its own base value to one less than the next rule's base value. The * ">>" token is called a <em>substitution</em> and tells the fomatter to * isolate the number's ones digit, format it using this same set of rules, and place the * result at the position of the ">>" token. Text in brackets is omitted if * the number being formatted is an even multiple of 10 (the hyphen is a literal hyphen; 24 * is "twenty-four," not "twenty four").</p> * * <p>For even larger numbers, we can actually look up several parts of the number in the * list:</p> * * <pre>100: << hundred[ >>];</pre> * * <p>The "<<" represents a new kind of substitution. The << isolates * the hundreds digit (and any digits to its left), formats it using this same rule set, and * places the result where the "<<" was. Notice also that the meaning of * >> has changed: it now refers to both the tens and the ones digits. The meaning of * both substitutions depends on the rule's base value. The base value determines the rule's <em>divisor,</em> * which is the highest power of 10 that is less than or equal to the base value (the user * can change this). To fill in the substitutions, the formatter divides the number being * formatted by the divisor. The integral quotient is used to fill in the << * substitution, and the remainder is used to fill in the >> substitution. The meaning * of the brackets changes similarly: text in brackets is omitted if the value being * formatted is an even multiple of the rule's divisor. The rules are applied recursively, so * if a substitution is filled in with text that includes another substitution, that * substitution is also filled in.</p> * * <p>This rule covers values up to 999, at which point we add another rule:</p> * * <pre>1000: << thousand[ >>];</pre> * * <p>Again, the meanings of the brackets and substitution tokens shift because the rule's * base value is a higher power of 10, changing the rule's divisor. This rule can actually be * used all the way up to 999,999. This allows us to finish out the rules as follows:</p> * * <pre> 1,000,000: << million[ >>]; * 1,000,000,000: << billion[ >>]; * 1,000,000,000,000: << trillion[ >>]; * 1,000,000,000,000,000: OUT OF RANGE!;</pre> * * <p>Commas, periods, and spaces can be used in the base values to improve legibility and * are ignored by the rule parser. The last rule in the list is customarily treated as an * "overflow rule," applying to everything from its base value on up, and often (as * in this example) being used to print out an error message or default representation. * Notice also that the size of the major groupings in large numbers is controlled by the * spacing of the rules: because in English we group numbers by thousand, the higher rules * are separated from each other by a factor of 1,000.</p> * * <p>To see how these rules actually work in practice, consider the following example: * Formatting 25,430 with this rule set would work like this:</p> * * <table border="0" width="100%"> * <tr> * <td><strong><< thousand >></strong></td> * <td>[the rule whose base value is 1,000 is applicable to 25,340]</td> * </tr> * <tr> * <td><strong>twenty->></strong> thousand >></td> * <td>[25,340 over 1,000 is 25. The rule for 20 applies.]</td> * </tr> * <tr> * <td>twenty-<strong>five</strong> thousand >></td> * <td>[25 mod 10 is 5. The rule for 5 is "five."</td> * </tr> * <tr> * <td>twenty-five thousand <strong><< hundred >></strong></td> * <td>[25,340 mod 1,000 is 340. The rule for 100 applies.]</td> * </tr> * <tr> * <td>twenty-five thousand <strong>three</strong> hundred >></td> * <td>[340 over 100 is 3. The rule for 3 is "three."]</td> * </tr> * <tr> * <td>twenty-five thousand three hundred <strong>forty</strong></td> * <td>[340 mod 100 is 40. The rule for 40 applies. Since 40 divides * evenly by 10, the hyphen and substitution in the brackets are omitted.]</td> * </tr> * </table> * * <p>The above syntax suffices only to format positive integers. To format negative numbers, * we add a special rule:</p> * * <pre>-x: minus >>;</pre> * * <p>This is called a <em>negative-number rule,</em> and is identified by "-x" * where the base value would be. This rule is used to format all negative numbers. the * >> token here means "find the number's absolute value, format it with these * rules, and put the result here."</p> * * <p>We also add a special rule called a <em>fraction rule </em>for numbers with fractional * parts:</p> * * <pre>x.x: << point >>;</pre> * * <p>This rule is used for all positive non-integers (negative non-integers pass through the * negative-number rule first and then through this rule). Here, the << token refers to * the number's integral part, and the >> to the number's fractional part. The * fractional part is formatted as a series of single-digit numbers (e.g., 123.456 would be * formatted as "one hundred twenty-three point four five six").</p> * * <p>To see how this rule syntax is applied to various languages, examine the resource data.</p> * * <p>There is actually much more flexibility built into the rule language than the * description above shows. A formatter may own multiple rule sets, which can be selected by * the caller, and which can use each other to fill in their substitutions. Substitutions can * also be filled in with digits, using a DecimalFormat object. There is syntax that can be * used to alter a rule's divisor in various ways. And there is provision for much more * flexible fraction handling. A complete description of the rule syntax follows:</p> * * <hr> * * <p>The description of a <tt>RuleBasedNumberFormat</tt>'s behavior consists of one or more <em>rule * sets.</em> Each rule set consists of a name, a colon, and a list of <em>rules.</em> A rule * set name must begin with a % sign. Rule sets with names that begin with a single % sign * are <em>public:</em> the caller can specify that they be used to format and parse numbers. * Rule sets with names that begin with %% are <em>private:</em> they exist only for the use * of other rule sets. If a formatter only has one rule set, the name may be omitted.</p> * * <p>The user can also specify a special "rule set" named <tt>%%lenient-parse</tt>. * The body of <tt>%%lenient-parse</tt> isn't a set of number-formatting rules, but a <tt>RuleBasedCollator</tt> * description which is used to define equivalences for lenient parsing. For more information * on the syntax, see <tt>RuleBasedCollator</tt>. For more information on lenient parsing, * see <tt>setLenientParse()</tt>. <em>Note:</em> symbols that have syntactic meaning * in collation rules, such as '&', have no particular meaning when appearing outside * of the <tt>lenient-parse</tt> rule set.</p> * * <p>The body of a rule set consists of an ordered, semicolon-delimited list of <em>rules.</em> * Internally, every rule has a base value, a divisor, rule text, and zero, one, or two <em>substitutions.</em> * These parameters are controlled by the description syntax, which consists of a <em>rule * descriptor,</em> a colon, and a <em>rule body.</em></p> * * <p>A rule descriptor can take one of the following forms (text in <em>italics</em> is the * name of a token):</p> * * <table border="0" width="100%"> * <tr> * <td><em>bv</em>:</td> * <td><em>bv</em> specifies the rule's base value. <em>bv</em> is a decimal * number expressed using ASCII digits. <em>bv</em> may contain spaces, period, and commas, * which are ignored. The rule's divisor is the highest power of 10 less than or equal to * the base value.</td> * </tr> * <tr> * <td><em>bv</em>/<em>rad</em>:</td> * <td><em>bv</em> specifies the rule's base value. The rule's divisor is the * highest power of <em>rad</em> less than or equal to the base value.</td> * </tr> * <tr> * <td><em>bv</em>>:</td> * <td><em>bv</em> specifies the rule's base value. To calculate the divisor, * let the radix be 10, and the exponent be the highest exponent of the radix that yields a * result less than or equal to the base value. Every > character after the base value * decreases the exponent by 1. If the exponent is positive or 0, the divisor is the radix * raised to the power of the exponent; otherwise, the divisor is 1.</td> * </tr> * <tr> * <td><em>bv</em>/<em>rad</em>>:</td> * <td><em>bv</em> specifies the rule's base value. To calculate the divisor, * let the radix be <em>rad</em>, and the exponent be the highest exponent of the radix that * yields a result less than or equal to the base value. Every > character after the radix * decreases the exponent by 1. If the exponent is positive or 0, the divisor is the radix * raised to the power of the exponent; otherwise, the divisor is 1.</td> * </tr> * <tr> * <td>-x:</td> * <td>The rule is a negative-number rule.</td> * </tr> * <tr> * <td>x.x:</td> * <td>The rule is an <em>improper fraction rule.</em></td> * </tr> * <tr> * <td>0.x:</td> * <td>The rule is a <em>proper fraction rule.</em></td> * </tr> * <tr> * <td>x.0:</td> * <td>The rule is a <em>master rule.</em></td> * </tr> * <tr> * <td><em>nothing</em></td> * <td>If the rule's rule descriptor is left out, the base value is one plus the * preceding rule's base value (or zero if this is the first rule in the list) in a normal * rule set. In a fraction rule set, the base value is the same as the preceding rule's * base value.</td> * </tr> * </table> * * <p>A rule set may be either a regular rule set or a <em>fraction rule set,</em> depending * on whether it is used to format a number's integral part (or the whole number) or a * number's fractional part. Using a rule set to format a rule's fractional part makes it a * fraction rule set.</p> * * <p>Which rule is used to format a number is defined according to one of the following * algorithms: If the rule set is a regular rule set, do the following: * * <ul> * <li>If the rule set includes a master rule (and the number was passed in as a <tt>double</tt>), * use the master rule. (If the number being formatted was passed in as a <tt>long</tt>, * the master rule is ignored.)</li> * <li>If the number is negative, use the negative-number rule.</li> * <li>If the number has a fractional part and is greater than 1, use the improper fraction * rule.</li> * <li>If the number has a fractional part and is between 0 and 1, use the proper fraction * rule.</li> * <li>Binary-search the rule list for the rule with the highest base value less than or equal * to the number. If that rule has two substitutions, its base value is not an even multiple * of its divisor, and the number <em>is</em> an even multiple of the rule's divisor, use the * rule that precedes it in the rule list. Otherwise, use the rule itself.</li> * </ul> * * <p>If the rule set is a fraction rule set, do the following: * * <ul> * <li>Ignore negative-number and fraction rules.</li> * <li>For each rule in the list, multiply the number being formatted (which will always be * between 0 and 1) by the rule's base value. Keep track of the distance between the result * the nearest integer.</li> * <li>Use the rule that produced the result closest to zero in the above calculation. In the * event of a tie or a direct hit, use the first matching rule encountered. (The idea here is * to try each rule's base value as a possible denominator of a fraction. Whichever * denominator produces the fraction closest in value to the number being formatted wins.) If * the rule following the matching rule has the same base value, use it if the numerator of * the fraction is anything other than 1; if the numerator is 1, use the original matching * rule. (This is to allow singular and plural forms of the rule text without a lot of extra * hassle.)</li> * </ul> * * <p>A rule's body consists of a string of characters terminated by a semicolon. The rule * may include zero, one, or two <em>substitution tokens,</em> and a range of text in * brackets. The brackets denote optional text (and may also include one or both * substitutions). The exact meanings of the substitution tokens, and under what conditions * optional text is omitted, depend on the syntax of the substitution token and the context. * The rest of the text in a rule body is literal text that is output when the rule matches * the number being formatted.</p> * * <p>A substitution token begins and ends with a <em>token character.</em> The token * character and the context together specify a mathematical operation to be performed on the * number being formatted. An optional <em>substitution descriptor </em>specifies how the * value resulting from that operation is used to fill in the substitution. The position of * the substitution token in the rule body specifies the location of the resultant text in * the original rule text.</p> * * <p>The meanings of the substitution token characters are as follows:</p> * * <table border="0" width="100%"> * <tr> * <td>>></td> * <td>in normal rule</td> * <td>Divide the number by the rule's divisor and format the remainder</td> * </tr> * <tr> * <td></td> * <td>in negative-number rule</td> * <td>Find the absolute value of the number and format the result</td> * </tr> * <tr> * <td></td> * <td>in fraction or master rule</td> * <td>Isolate the number's fractional part and format it.</td> * </tr> * <tr> * <td></td> * <td>in rule in fraction rule set</td> * <td>Not allowed.</td> * </tr> * <tr> * <td>>>></td> * <td>in normal rule</td> * <td>Divide the number by the rule's divisor and format the remainder, * but bypass the normal rule-selection process and just use the * rule that precedes this one in this rule list.</td> * </tr> * <tr> * <td></td> * <td>in all other rules</td> * <td>Not allowed.</td> * </tr> * <tr> * <td><<</td> * <td>in normal rule</td> * <td>Divide the number by the rule's divisor and format the quotient</td> * </tr> * <tr> * <td></td> * <td>in negative-number rule</td> * <td>Not allowed.</td> * </tr> * <tr> * <td></td> * <td>in fraction or master rule</td> * <td>Isolate the number's integral part and format it.</td> * </tr> * <tr> * <td></td> * <td>in rule in fraction rule set</td> * <td>Multiply the number by the rule's base value and format the result.</td> * </tr> * <tr> * <td>==</td> * <td>in all rule sets</td> * <td>Format the number unchanged</td> * </tr> * <tr> * <td>[]</td> * <td>in normal rule</td> * <td>Omit the optional text if the number is an even multiple of the rule's divisor</td> * </tr> * <tr> * <td></td> * <td>in negative-number rule</td> * <td>Not allowed.</td> * </tr> * <tr> * <td></td> * <td>in improper-fraction rule</td> * <td>Omit the optional text if the number is between 0 and 1 (same as specifying both an * x.x rule and a 0.x rule)</td> * </tr> * <tr> * <td></td> * <td>in master rule</td> * <td>Omit the optional text if the number is an integer (same as specifying both an x.x * rule and an x.0 rule)</td> * </tr> * <tr> * <td></td> * <td>in proper-fraction rule</td> * <td>Not allowed.</td> * </tr> * <tr> * <td></td> * <td>in rule in fraction rule set</td> * <td>Omit the optional text if multiplying the number by the rule's base value yields 1.</td> * </tr> * </table> * * <p>The substitution descriptor (i.e., the text between the token characters) may take one * of three forms:</p> * * <table border="0" width="100%"> * <tr> * <td>a rule set name</td> * <td>Perform the mathematical operation on the number, and format the result using the * named rule set.</td> * </tr> * <tr> * <td>a DecimalFormat pattern</td> * <td>Perform the mathematical operation on the number, and format the result using a * DecimalFormat with the specified pattern. The pattern must begin with 0 or #.</td> * </tr> * <tr> * <td>nothing</td> * <td>Perform the mathematical operation on the number, and format the result using the rule * set containing the current rule, except: * <ul> * <li>You can't have an empty substitution descriptor with a == substitution.</li> * <li>If you omit the substitution descriptor in a >> substitution in a fraction rule, * format the result one digit at a time using the rule set containing the current rule.</li> * <li>If you omit the substitution descriptor in a << substitution in a rule in a * fraction rule set, format the result using the default rule set for this formatter.</li> * </ul> * </td> * </tr> * </table> * * <p>Whitespace is ignored between a rule set name and a rule set body, between a rule * descriptor and a rule body, or between rules. If a rule body begins with an apostrophe, * the apostrophe is ignored, but all text after it becomes significant (this is how you can * have a rule's rule text begin with whitespace). There is no escape function: the semicolon * is not allowed in rule set names or in rule text, and the colon is not allowed in rule set * names. The characters beginning a substitution token are always treated as the beginning * of a substitution token.</p> * * <p>See the resource data and the demo program for annotated examples of real rule sets * using these features.</p> * * <p><em>User subclasses are not supported.</em> While clients may write * subclasses, such code will not necessarily work and will not be * guaranteed to work stably from release to release. * * <p><b>Localizations</b></p> * <p>Constructors are available that allow the specification of localizations for the * public rule sets (and also allow more control over what public rule sets are available). * Localization data is represented as a textual description. The description represents * an array of arrays of string. The first element is an array of the public rule set names, * each of these must be one of the public rule set names that appear in the rules. Only * names in this array will be treated as public rule set names by the API. Each subsequent * element is an array of localizations of these names. The first element of one of these * subarrays is the locale name, and the remaining elements are localizations of the * public rule set names, in the same order as they were listed in the first arrray.</p> * <p>In the syntax, angle brackets '<', '>' are used to delimit the arrays, and comma ',' is used * to separate elements of an array. Whitespace is ignored, unless quoted.</p> * <p>For example:<pre> * < < %foo, %bar, %baz >, * < en, Foo, Bar, Baz >, * < fr, 'le Foo', 'le Bar', 'le Baz' > * < zh, \\u7532, \\u4e59, \\u4e19 > > * </pre></p> * @author Richard Gillam * @see NumberFormat * @see DecimalFormat * @stable ICU 2.0 */ class U_I18N_API RuleBasedNumberFormat : public NumberFormat { public: //----------------------------------------------------------------------- // constructors //----------------------------------------------------------------------- /** * Creates a RuleBasedNumberFormat that behaves according to the description * passed in. The formatter uses the default locale. * @param rules A description of the formatter's desired behavior. * See the class documentation for a complete explanation of the description * syntax. * @param perror The parse error if an error was encountered. * @param status The status indicating whether the constructor succeeded. * @stable ICU 3.2 */ RuleBasedNumberFormat(const UnicodeString& rules, UParseError& perror, UErrorCode& status); /** * Creates a RuleBasedNumberFormat that behaves according to the description * passed in. The formatter uses the default locale. * <p> * The localizations data provides information about the public * rule sets and their localized display names for different * locales. The first element in the list is an array of the names * of the public rule sets. The first element in this array is * the initial default ruleset. The remaining elements in the * list are arrays of localizations of the names of the public * rule sets. Each of these is one longer than the initial array, * with the first String being the ULocale ID, and the remaining * Strings being the localizations of the rule set names, in the * same order as the initial array. Arrays are NULL-terminated. * @param rules A description of the formatter's desired behavior. * See the class documentation for a complete explanation of the description * syntax. * @param localizations the localization information. * names in the description. These will be copied by the constructor. * @param perror The parse error if an error was encountered. * @param status The status indicating whether the constructor succeeded. * @stable ICU 3.2 */ RuleBasedNumberFormat(const UnicodeString& rules, const UnicodeString& localizations, UParseError& perror, UErrorCode& status); /** * Creates a RuleBasedNumberFormat that behaves according to the rules * passed in. The formatter uses the specified locale to determine the * characters to use when formatting numerals, and to define equivalences * for lenient parsing. * @param rules The formatter rules. * See the class documentation for a complete explanation of the rule * syntax. * @param locale A locale that governs which characters are used for * formatting values in numerals and which characters are equivalent in * lenient parsing. * @param perror The parse error if an error was encountered. * @param status The status indicating whether the constructor succeeded. * @stable ICU 2.0 */ RuleBasedNumberFormat(const UnicodeString& rules, const Locale& locale, UParseError& perror, UErrorCode& status); /** * Creates a RuleBasedNumberFormat that behaves according to the description * passed in. The formatter uses the default locale. * <p> * The localizations data provides information about the public * rule sets and their localized display names for different * locales. The first element in the list is an array of the names * of the public rule sets. The first element in this array is * the initial default ruleset. The remaining elements in the * list are arrays of localizations of the names of the public * rule sets. Each of these is one longer than the initial array, * with the first String being the ULocale ID, and the remaining * Strings being the localizations of the rule set names, in the * same order as the initial array. Arrays are NULL-terminated. * @param rules A description of the formatter's desired behavior. * See the class documentation for a complete explanation of the description * syntax. * @param localizations a list of localizations for the rule set * names in the description. These will be copied by the constructor. * @param locale A locale that governs which characters are used for * formatting values in numerals and which characters are equivalent in * lenient parsing. * @param perror The parse error if an error was encountered. * @param status The status indicating whether the constructor succeeded. * @stable ICU 3.2 */ RuleBasedNumberFormat(const UnicodeString& rules, const UnicodeString& localizations, const Locale& locale, UParseError& perror, UErrorCode& status); /** * Creates a RuleBasedNumberFormat from a predefined ruleset. The selector * code choosed among three possible predefined formats: spellout, ordinal, * and duration. * @param tag A selector code specifying which kind of formatter to create for that * locale. There are four legal values: URBNF_SPELLOUT, which creates a formatter that * spells out a value in words in the desired language, URBNF_ORDINAL, which attaches * an ordinal suffix from the desired language to the end of a number (e.g. "123rd"), * URBNF_DURATION, which formats a duration in seconds as hours, minutes, and seconds, * and URBNF_NUMBERING_SYSTEM, which is used to invoke rules for alternate numbering * systems such as the Hebrew numbering system, or for Roman Numerals, etc. * @param locale The locale for the formatter. * @param status The status indicating whether the constructor succeeded. * @stable ICU 2.0 */ RuleBasedNumberFormat(URBNFRuleSetTag tag, const Locale& locale, UErrorCode& status); //----------------------------------------------------------------------- // boilerplate //----------------------------------------------------------------------- /** * Copy constructor * @param rhs the object to be copied from. * @stable ICU 2.6 */ RuleBasedNumberFormat(const RuleBasedNumberFormat& rhs); /** * Assignment operator * @param rhs the object to be copied from. * @stable ICU 2.6 */ RuleBasedNumberFormat& operator=(const RuleBasedNumberFormat& rhs); /** * Release memory allocated for a RuleBasedNumberFormat when you are finished with it. * @stable ICU 2.6 */ virtual ~RuleBasedNumberFormat(); /** * Clone this object polymorphically. The caller is responsible * for deleting the result when done. * @return A copy of the object. * @stable ICU 2.6 */ virtual Format* clone(void) const; /** * Return true if the given Format objects are semantically equal. * Objects of different subclasses are considered unequal. * @param other the object to be compared with. * @return true if the given Format objects are semantically equal. * @stable ICU 2.6 */ virtual UBool operator==(const Format& other) const; //----------------------------------------------------------------------- // public API functions //----------------------------------------------------------------------- /** * return the rules that were provided to the RuleBasedNumberFormat. * @return the result String that was passed in * @stable ICU 2.0 */ virtual UnicodeString getRules() const; /** * Return the number of public rule set names. * @return the number of public rule set names. * @stable ICU 2.0 */ virtual int32_t getNumberOfRuleSetNames() const; /** * Return the name of the index'th public ruleSet. If index is not valid, * the function returns null. * @param index the index of the ruleset * @return the name of the index'th public ruleSet. * @stable ICU 2.0 */ virtual UnicodeString getRuleSetName(int32_t index) const; /** * Return the number of locales for which we have localized rule set display names. * @return the number of locales for which we have localized rule set display names. * @stable ICU 3.2 */ virtual int32_t getNumberOfRuleSetDisplayNameLocales(void) const; /** * Return the index'th display name locale. * @param index the index of the locale * @param status set to a failure code when this function fails * @return the locale * @see #getNumberOfRuleSetDisplayNameLocales * @stable ICU 3.2 */ virtual Locale getRuleSetDisplayNameLocale(int32_t index, UErrorCode& status) const; /** * Return the rule set display names for the provided locale. These are in the same order * as those returned by getRuleSetName. The locale is matched against the locales for * which there is display name data, using normal fallback rules. If no locale matches, * the default display names are returned. (These are the internal rule set names minus * the leading '%'.) * @param index the index of the rule set * @param locale the locale (returned by getRuleSetDisplayNameLocales) for which the localized * display name is desired * @return the display name for the given index, which might be bogus if there is an error * @see #getRuleSetName * @stable ICU 3.2 */ virtual UnicodeString getRuleSetDisplayName(int32_t index, const Locale& locale = Locale::getDefault()); /** * Return the rule set display name for the provided rule set and locale. * The locale is matched against the locales for which there is display name data, using * normal fallback rules. If no locale matches, the default display name is returned. * @return the display name for the rule set * @stable ICU 3.2 * @see #getRuleSetDisplayName */ virtual UnicodeString getRuleSetDisplayName(const UnicodeString& ruleSetName, const Locale& locale = Locale::getDefault()); using NumberFormat::format; /** * Formats the specified 32-bit number using the default ruleset. * @param number The number to format. * @param toAppendTo the string that will hold the (appended) result * @param pos the fieldposition * @return A textual representation of the number. * @stable ICU 2.0 */ virtual UnicodeString& format(int32_t number, UnicodeString& toAppendTo, FieldPosition& pos) const; /** * Formats the specified 64-bit number using the default ruleset. * @param number The number to format. * @param toAppendTo the string that will hold the (appended) result * @param pos the fieldposition * @return A textual representation of the number. * @stable ICU 2.1 */ virtual UnicodeString& format(int64_t number, UnicodeString& toAppendTo, FieldPosition& pos) const; /** * Formats the specified number using the default ruleset. * @param number The number to format. * @param toAppendTo the string that will hold the (appended) result * @param pos the fieldposition * @return A textual representation of the number. * @stable ICU 2.0 */ virtual UnicodeString& format(double number, UnicodeString& toAppendTo, FieldPosition& pos) const; /** * Formats the specified number using the named ruleset. * @param number The number to format. * @param ruleSetName The name of the rule set to format the number with. * This must be the name of a valid public rule set for this formatter. * @param toAppendTo the string that will hold the (appended) result * @param pos the fieldposition * @param status the status * @return A textual representation of the number. * @stable ICU 2.0 */ virtual UnicodeString& format(int32_t number, const UnicodeString& ruleSetName, UnicodeString& toAppendTo, FieldPosition& pos, UErrorCode& status) const; /** * Formats the specified 64-bit number using the named ruleset. * @param number The number to format. * @param ruleSetName The name of the rule set to format the number with. * This must be the name of a valid public rule set for this formatter. * @param toAppendTo the string that will hold the (appended) result * @param pos the fieldposition * @param status the status * @return A textual representation of the number. * @stable ICU 2.1 */ virtual UnicodeString& format(int64_t number, const UnicodeString& ruleSetName, UnicodeString& toAppendTo, FieldPosition& pos, UErrorCode& status) const; /** * Formats the specified number using the named ruleset. * @param number The number to format. * @param ruleSetName The name of the rule set to format the number with. * This must be the name of a valid public rule set for this formatter. * @param toAppendTo the string that will hold the (appended) result * @param pos the fieldposition * @param status the status * @return A textual representation of the number. * @stable ICU 2.0 */ virtual UnicodeString& format(double number, const UnicodeString& ruleSetName, UnicodeString& toAppendTo, FieldPosition& pos, UErrorCode& status) const; /** * Formats the specified number using the default ruleset. * @param obj The number to format. * @param toAppendTo the string that will hold the (appended) result * @param pos the fieldposition * @param status the status * @return A textual representation of the number. * @stable ICU 2.0 */ virtual UnicodeString& format(const Formattable& obj, UnicodeString& toAppendTo, FieldPosition& pos, UErrorCode& status) const; /** * Redeclared Format method. * @param obj the object to be formatted. * @param result Output param which will receive the formatted string. * @param status Output param set to success/failure code * @return A reference to 'result'. * @stable ICU 2.0 */ UnicodeString& format(const Formattable& obj, UnicodeString& result, UErrorCode& status) const; /** * Redeclared NumberFormat method. * @param number the double value to be formatted. * @param output Output param which will receive the formatted string. * @return A reference to 'output'. * @stable ICU 2.0 */ UnicodeString& format(double number, UnicodeString& output) const; /** * Redeclared NumberFormat method. * @param number the long value to be formatted. * @param output Output param which will receive the formatted string. * @return A reference to 'output'. * @stable ICU 2.0 */ UnicodeString& format(int32_t number, UnicodeString& output) const; /** * Parses the specfied string, beginning at the specified position, according * to this formatter's rules. This will match the string against all of the * formatter's public rule sets and return the value corresponding to the longest * parseable substring. This function's behavior is affected by the lenient * parse mode. * @param text The string to parse * @param result the result of the parse, either a double or a long. * @param parsePosition On entry, contains the position of the first character * in "text" to examine. On exit, has been updated to contain the position * of the first character in "text" that wasn't consumed by the parse. * @see #setLenient * @stable ICU 2.0 */ virtual void parse(const UnicodeString& text, Formattable& result, ParsePosition& parsePosition) const; /** * Redeclared Format method. * @param text The string to parse * @param result the result of the parse, either a double or a long. * @param status Output param set to failure code when a problem occurs. * @stable ICU 2.0 */ virtual inline void parse(const UnicodeString& text, Formattable& result, UErrorCode& status) const; #if !UCONFIG_NO_COLLATION /** * Turns lenient parse mode on and off. * * When in lenient parse mode, the formatter uses a Collator for parsing the text. * Only primary differences are treated as significant. This means that case * differences, accent differences, alternate spellings of the same letter * (e.g., ae and a-umlaut in German), ignorable characters, etc. are ignored in * matching the text. In many cases, numerals will be accepted in place of words * or phrases as well. * * For example, all of the following will correctly parse as 255 in English in * lenient-parse mode: * <br>"two hundred fifty-five" * <br>"two hundred fifty five" * <br>"TWO HUNDRED FIFTY-FIVE" * <br>"twohundredfiftyfive" * <br>"2 hundred fifty-5" * * The Collator used is determined by the locale that was * passed to this object on construction. The description passed to this object * on construction may supply additional collation rules that are appended to the * end of the default collator for the locale, enabling additional equivalences * (such as adding more ignorable characters or permitting spelled-out version of * symbols; see the demo program for examples). * * It's important to emphasize that even strict parsing is relatively lenient: it * will accept some text that it won't produce as output. In English, for example, * it will correctly parse "two hundred zero" and "fifteen hundred". * * @param enabled If true, turns lenient-parse mode on; if false, turns it off. * @see RuleBasedCollator * @stable ICU 2.0 */ virtual void setLenient(UBool enabled); /** * Returns true if lenient-parse mode is turned on. Lenient parsing is off * by default. * @return true if lenient-parse mode is turned on. * @see #setLenient * @stable ICU 2.0 */ virtual inline UBool isLenient(void) const; #endif /** * Override the default rule set to use. If ruleSetName is null, reset * to the initial default rule set. If the rule set is not a public rule set name, * U_ILLEGAL_ARGUMENT_ERROR is returned in status. * @param ruleSetName the name of the rule set, or null to reset the initial default. * @param status set to failure code when a problem occurs. * @stable ICU 2.6 */ virtual void setDefaultRuleSet(const UnicodeString& ruleSetName, UErrorCode& status); /** * Return the name of the current default rule set. If the current rule set is * not public, returns a bogus (and empty) UnicodeString. * @return the name of the current default rule set * @stable ICU 3.0 */ virtual UnicodeString getDefaultRuleSetName() const; public: /** * ICU "poor man's RTTI", returns a UClassID for this class. * * @stable ICU 2.8 */ static UClassID U_EXPORT2 getStaticClassID(void); /** * ICU "poor man's RTTI", returns a UClassID for the actual class. * * @stable ICU 2.8 */ virtual UClassID getDynamicClassID(void) const; /** * Sets the decimal format symbols, which is generally not changed * by the programmer or user. The formatter takes ownership of * symbolsToAdopt; the client must not delete it. * * @param symbolsToAdopt DecimalFormatSymbols to be adopted. * @draft ICU 49 */ virtual void adoptDecimalFormatSymbols(DecimalFormatSymbols* symbolsToAdopt); /** * Sets the decimal format symbols, which is generally not changed * by the programmer or user. A clone of the symbols is created and * the symbols is _not_ adopted; the client is still responsible for * deleting it. * * @param symbols DecimalFormatSymbols. * @draft ICU 49 */ virtual void setDecimalFormatSymbols(const DecimalFormatSymbols& symbols); private: RuleBasedNumberFormat(); // default constructor not implemented // this will ref the localizations if they are not NULL // caller must deref to get adoption RuleBasedNumberFormat(const UnicodeString& description, LocalizationInfo* localizations, const Locale& locale, UParseError& perror, UErrorCode& status); void init(const UnicodeString& rules, LocalizationInfo* localizations, UParseError& perror, UErrorCode& status); void dispose(); void stripWhitespace(UnicodeString& src); void initDefaultRuleSet(); void format(double number, NFRuleSet& ruleSet); NFRuleSet* findRuleSet(const UnicodeString& name, UErrorCode& status) const; /* friend access */ friend class NFSubstitution; friend class NFRule; friend class FractionalPartSubstitution; inline NFRuleSet * getDefaultRuleSet() const; Collator * getCollator() const; DecimalFormatSymbols * getDecimalFormatSymbols() const; private: NFRuleSet **ruleSets; UnicodeString* ruleSetDescriptions; int32_t numRuleSets; NFRuleSet *defaultRuleSet; Locale locale; Collator* collator; DecimalFormatSymbols* decimalFormatSymbols; UBool lenient; UnicodeString* lenientParseRules; LocalizationInfo* localizations; }; // --------------- inline UnicodeString& RuleBasedNumberFormat::format(const Formattable& obj, UnicodeString& result, UErrorCode& status) const { // Don't use Format:: - use immediate base class only, // in case immediate base modifies behavior later. // dlf - the above comment is bogus, if there were a reason to modify // it, it would be virtual, and there's no reason because it is // a one-line macro in NumberFormat anyway, just like this one. return NumberFormat::format(obj, result, status); } inline UnicodeString& RuleBasedNumberFormat::format(double number, UnicodeString& output) const { FieldPosition pos(0); return format(number, output, pos); } inline UnicodeString& RuleBasedNumberFormat::format(int32_t number, UnicodeString& output) const { FieldPosition pos(0); return format(number, output, pos); } inline void RuleBasedNumberFormat::parse(const UnicodeString& text, Formattable& result, UErrorCode& status) const { NumberFormat::parse(text, result, status); } #if !UCONFIG_NO_COLLATION inline UBool RuleBasedNumberFormat::isLenient(void) const { return lenient; } #endif inline NFRuleSet* RuleBasedNumberFormat::getDefaultRuleSet() const { return defaultRuleSet; } U_NAMESPACE_END /* U_HAVE_RBNF */ #endif /* RBNF_H */ #endif